GTA funded – Vibroimpact system (VIS) for energy harvesting

University of Leicester

About the Project

Project Highlights

  1. Studying different types of vibro-impact motions that deliver the maximum amount of converted electrical energy
  2. Exploring period doubling bifurcations, grazing behavior, and potential regions of bi-stability and chaotic behavior in VIS
  3. Studying the influence of the stochastic effects on the weakly stable solutions or near the critical values where the stochastic noise likely to cause transitions that influence energy outputs.

Project

A vibroimpact (VI) systems, their dynamics and applications as energy sinks keep attracting attention of scientists around the world [1, 2]. A VI system is one of the most colorful representatives of nonlinear dynamics. Despite its relatively simple mechanical structure that can be realized by a mass-spring system with a barrier, various nonlinear effects can be observed in VI systems [3, 4]. The difficulty in analyzing the VI systems is related to the fact that a VI system’s velocity is discontinues in real life applications where the impact cannot be treated as ideally elastic (restitution coefficient r = 1). To overcome this difficulty a number of approaches have been developed for deterministic and stochastic systems [3, 4, 5]. Nevertheless, there are several issues related to the dynamics of VI systems end their applications that have not yet been studied sufficiently. A relatively small number of research publications are focused on efficient VI system design for Energy Harvesting from ambient vibrations into high density electrical energy at low cost. The main reasons for the lack of results is the difficulty in predicting their performance and optimizing their design.

This project focuses on studying dynamics of a novel mechanical system for energy harvesting from vibrations. The system comprises an external mass M with a slot allowing a free rolling-type motion of an internal mass (a ball). Whereas the external mass is subjected to a harmonic excitation f(t) the inner mass motion due to gravity g is engaged by an impact interaction against dielectric membranes, covering the bottom ∂B and top ∂T of the slot. The deformation of the membranes results in capacitance change and therefore can be used for energy harvesting.

The current analytical results [6, 7] point to other types of behavior to be explored in future studies, in terms of phase and impact velocity. This includes period doubling bifurcations, grazing behavior, and potential regions of bi-stability and chaotic behavior. The analytical results for stability and bifurcations also suggest parameter regimes to explore within the stochastic context. For example, in cases where the solutions are weakly stable or near the critical values stochastic effects are likely to cause transitions that influence outputs. The future studies of other types of stable periodic motions, which can be observed in this vibroimpact system, are essential for comparison and identification of those motions that are realistic and deliver the maximum amount of harvested energy.

Enquiries to project supervisor: Dr Larissa Serdukova

General enquiries to

How to Apply

Please refer to the application advice and use the application link on our web page

https://le.ac.uk/study/research-degrees/funded-opportunities/maths-gta

To help us track our recruitment effort, please indicate in your email – cover/motivation letter where (globalvacancies.org) you saw this job posting.

Job Location